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ABSTRACT: We present a microscopic self-consistent theory for the long-time
diffusion of infinitely thin rods in a hard sphere matrix based on the simultaneous
dynamical treatment of topological uncrossability and finite excluded volume
constraints. Distinctive regimes of coupled anisotropic longitudinal and
transverse diffusion are predicted, and steric blocking of the latter leads to a
tube-like localization transition largely controlled by the ratio of the sphere
diameter to rod length and tube diameter. For entangled polymers, in a limited
regime of strongly retarded dynamics a “doubly renormalized” reptation law is
predicted where the confinement tube is compressed and longitudinal motion is
partially blocked. At high sphere volume fractions, strong suppression of rod
motion results in dynamic localization in the unentangled regime. The present
advance provides a theoretical foundation to treat differential mobility effects and
flexible chain dynamics in diverse polymer−particle mixtures.

Understanding the unique slow dynamics of liquids of
topologically entangled macromolecular objects is a

fascinating problem relevant to polymer physics, cellular
biology, and engineering materials.1−4 For polymer fluids of
linearly connected flexible chains or rigid rods this problem is
commonly treated based on the reptation-tube model.1,3,4 This
phenomenological approach replaces, by assumption, the many-
body dynamical consequences of polymer uncrossability and
connectivity by an effectively static “tube” confinement field.
The latter enforces transient transverse localization on an
intrinsic mesoscopic length scale, the “tube diameter”. Knowl-
edge of the latter then immediately allows predictions to be
made for long-time diffusion using scaling arguments and the
assumption that anisotropic, curvilinear Brownian motion along
the polymer contour (reptation) is the dominant motion.4

Entangled polymer dynamics must be a richer and far more
complex problem in polymer−particle mixtures or “nano-
composites” due to the presence of additional length and time
scales and finite excluded volume and geometric confinement,
the fundamental understanding of which is in its infancy.5−12

Impenetrable obstacles are expected to result in at least four
qualitatively new physical effects: (i) the tube can tighten due to
sphere-induced confinement, (ii) the reptation motion could be
slowed down (or destroyed) due to enhanced frictional and/or
geometric blocking effects, (iii) longitudinal and transverse
diffusivities may become strongly coupled, and (iv) rigid
polymers can literally localize. Recent experiments6−10 and
simulations11 on chain polymer nanocomposites have just
begun to address some of these issues. They find that the
addition of spherical particles leads to a smaller apparent tube
diameter6,10 and slower center-of-mass (CM) diffusion.7−9

However, even at zeroth order, no theoretical understanding

exists due to the high difficulty of treating in a unified manner
the consequences of topological uncrossability and excluded
volume interactions. We believe progress requires the
formulation of a tractable first-principles approach12,13 based
on merging concepts of polymer and liquid-state physics, which
is the topic of this Letter.
Our starting point builds on two recent theoretical advances.

The first is a microscopic self-consistent dynamic theory13 for a
structurally ideal fluid of nonrotating, topologically entangled,
infinitely thin rods or “needles” of length L and dimensionless
number density ρr*  ρrL

3. It successfully predicts the
emergence of a confinement tube when ρr* > ρe* ≈ 10, with
diameter dT,0 ∝ 1/ρr* when ρr* ≫ ρe*, and quantitatively agrees
with simulation for diffusion constants.14 Second, this approach
has very recently been generalized to mixtures of needles and
immobile hard spheres (radius R, volume fraction ϕs 
4πρsR

3/3) for the single question of intermediate-time trans-
verse localization. On the basis of quenching longitudinal rod
motion, tube compression is predicted, dT(ϕs)/dT,0 ∼ 1/(1 +
aϕeff), where ϕeff = ϕs(dT,0/2R)(L/2R) ∝ ρsRLdT,0 and a is a
numerical constant.12 Using self-consistent primitive path and
chain-to-needle mapping ideas,15 this theory predicts tube
diameters in good agreement with simulations.11,16

The second advance above addresses point (i) but is entirely
inadequate for understanding long-time diffusion since the
longitudinal transport (reptation) can be fundamentally altered
by the new physics contained in points (ii)−(iv). This stands in

Received: November 7, 2014
Accepted: December 15, 2014
Published: December 22, 2014

Letter

pubs.acs.org/macroletters

© 2014 American Chemical Society 53 dx.doi.org/10.1021/mz500708z | ACS Macro Lett. 2015, 4, 53−57

pubs.acs.org/macroletters


qualitative contrast to pure polymer fluids where the reptation
motion is “free” (unaffected by interneedle collisions) and
decoupled from transverse motion. Here we develop a general
dynamical theory for needle−sphere mixtures and implement it
to study long-time diffusivity in the specific context of a
spatially fixed array of hard spheres with a statistically random
microstructure. The fixed sphere limit is the simplest
fundamental starting point, in analogy with the classic analysis
of the “prototype” problem of a single chain reptating in a fixed
array of topological obstacles.3,4 This limit is also directly
relevant to real nanocomposites when particles are sufficiently
large that they are effectively immobile on the polymer
diffusion time scale.8,9

Physically, we expect many dynamical regimes exist as a
consequence of the presence of multiple length-scale ratios and
two qualitatively new collisional processes (see Figure 1): a

“side-on” collision that modifies only needle transverse motion
and an “end-on” collision that simultaneously affects transverse
and longitudinal motion in a correlated manner. The latter will
be shown to result in a qualitative breakdown of pure-needle
dynamics with longitudinal motion no longer free and self-
consistently coupled to transverse motion. The distinct
dynamical regimes are determined by the relative and absolute
importance of rod−rod and rod−sphere collisions which are a
rich function of ρr*, particle size relative to the “bare” tube
diameter, 2R/dT,0, aspect ratio, γ ≡ L/2R, and the mean
geometric confinement scale, ∝ Rϕs

−1/3. We address in a unified
manner all four physical aspects raised in the Introduction and
answer the following questions. How does the pure fluid
reptation-tube model break down? Can the reptation-tube
framework be “renormalized” in certain regimes to describe
nanocomposites? Do entirely new phenomena emerge? How
do the multiple length scales inherent to the rod−sphere
mixture control polymer diffusion?
We have constructed a general two-component theory for

mobile needles and particles based on effective Smoluchowski
equations that include exactly at the two-body level rod
topological uncrossability and rod−sphere excluded volume
constraints via collision “T-operators”;12−14,17 higher-order
dynamical correlations are accounted for through infinite

order via a self-consistent closure. As described in the SM,18

for immobile spheres and random liquid structure, the self-
consistent equations for the rod effective diffusion tensor,
D̂(r)(u1⃗), become
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Here, D̂0
(r) is the “bare” rod diffusion tensor; ui⃗ is the orientation

vector of particle i; α = r,s indicates rod and sphere; ρα is the
number density of species α; r ⃗ is the interparticle CM
separation vector; grα is the pair correlation function (here
random); Dr ⃗ = drd⃗u ⃗2/(4π) for rods and Dr ⃗ = dr ⃗ otherwise;
Ωe

(rα)†(z→ 0) = (∇⃗ + T⃗(rα))·[D̂(r) + D̂(α)]·∇⃗ is the adjoint of the
long-time effective Smoluchowski operator; and T⃗(rα) is the T-
operator. The anisotropic rod diffusion tensor is D̂(r)(u⃗1) =
D∥

(r)u ⃗1u ⃗1T + D⊥
(r)(1 − u ⃗1u ⃗T), where D⊥

(r) (D∥
(r)) is the rod

transverse (longitudinal) diffusion constant and D(s) = 0 for
fixed spheres.
Two coupled self-consistent equations for the needle

diffusion constants can be derived from eq 118
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where ε ≡ (D⊥
(r)/D∥

(r))1/2 quantifies diffusion anisotropy and the
rod−rod and rod−sphere collision contributions are repre-
sented by F⊥
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In eqs 3a and 3b, ζ0 ≡ (1 + γ)ε/|(1 + γ)2ε2 − 1|1/2, qn(x) is a
specific Legendre function of the second kind,18,19 c2n(x) ≡
∫ 0
xdμP2n(μ) + ∫ x

1dμ(1 − μ2)1/2P2n(μ) and c2n+1(x) ≡ ∫ x
1dμ

(μ − x)P2n+1(μ) involve Legendre polynomial of the first kind,
Pn(x). Equation 2 explicitly demonstrates longitudinal needle
motion is only affected by rod−sphere collisions. Analytic
forms of eqs 3a and 3b in the γ≫ 1 and ε(1 + γ) ≪ 1 limit can
be derived18 as F⊥

(rs) ∝ γ2ε and F∥
(rs) ∝ γ0/ε, illustrating the sharp

contrast between how the aspect ratio and diffusivity ratio
determine the dynamical consequences of head-on and side-on
collisions.
Figure 2 presents representative calculations of the transverse

and longitudinal diffusion constants as a function of sphere
volume fraction for a low and high aspect ratio; rod density
ranges from the dilute to heavily entangled regimes. Both
diffusivities monotonically decrease with ϕs at a rate that grows
with rod density (more topological entanglements, tighter pure-
needle-fluid tube) and aspect ratio. Both the opposite
curvatures of the two diffusion constant curves and the more
rapid suppression of transverse motion with sphere loading are

Figure 1. Schematics of a rod−sphere mixture showing characteristic
length scales, anisotropic diffusion constants, different rod concen-
tration regimes, and distinct collisions. (a) Low rod concentrations
where the pure-needle tube diameter, dT,0, is greater than the sphere
diameter, 2R. (b) High rod concentrations which involve less side-on
rod−sphere collisions due to a “tight” tube where dT,0 < 2R. (c) Two
types of rod−sphere collisions (side-on and end-on).
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direct consequences of the extended needle shape where more
side-on versus end-on collisions occur. This effect is more
pronounced for larger aspect ratios and/or smaller rod
concentrations or more generally larger values of
(dT,0/2R)(L/2R), for which the transient transverse localization
(tube compression) effect is enhanced.12 In contrast, the two
diffusivities decrease in a relatively symmetric and strongly
coupled manner for highly entangled rods. The physical reason
is that side-on collisions are now restricted by the tight pure-
needle tube, so end-on collisions “blocking” longitudinal
motion, which simultaneously affect and couple the two
diffusivities, dominate. These two physically distinct situations
are illustrated in Figure 1. As a generic consequence of the fixed
sphere condition and polymer rigidity, a simultaneous local-
ization of longitudinal and transverse motion is predicted at a
critical volume fraction, ϕc.
Figure 3 studies the consequences of anisotropic diffusion in

two ways. First, the inset shows that the diffusion constant ratio
is always reduced (enhanced anisotropy) with increasing sphere
loading, rod number density, and aspect ratio. However, its
growth with ϕs weakens as more topological entanglements are
present (higher ρr*) and for shorter rods (smaller L/2R),
corresponding to the 2R/dT,0 ≫ 1 regime where the end-on
“blocking” effect becomes significant. The diffusivity ratio tends
to a finite value as the localization transition is approached,
approximately satisfying the scaling law18 D⊥

(r)/D∥
(r) ∝ ϕc

2.
The CM diffusion constant, DCM

(r) = (2D⊥
(r) + D∥

(r))/3, is
experimentally measurable. For the low-aspect-ratio “tight” tube
cases (dT,0 ≪ 2R), Figure 3 shows that DCM

(r) decreases roughly
linearly with ϕs, and different rod density systems nearly
collapse (not shown) if the horizontal axis is normalized with
respect to ϕc as a result of the relatively weak dependence of
diffusional anisotropy on ϕs (Figure 3, inset). In contrast, for
large aspect ratios, DCM

(r) is a more complicated, nonlinear
function of sphere loading. These features are strongest in the
tracer limit and reflect a nonuniversal competition between
topological entanglements and rod−sphere collisions. Specifi-
cally, at low ρr* and/or large γ (where dT,0 ≫ 2R) the CM
motion is controlled mainly by side-on rod−sphere collisions

which only suppress transverse diffusion. However, at large ρr*
and/or small γ (where dT,0 ≪ 2R), needles have less space for
transverse dynamical fluctuation, and it becomes harder for
them to avoid or “go around” obstacles. As a consequence, the
suppression of DCM

(r) is primarily caused by the longitudinal
motion becoming partially blocked, an effect we call “tube
capping”. For dilute rods, the general form of the slowdown of
DCM due to sphere crowding is in qualitative agreement20 with
existing simulation studies in 3-dimensions.22

The above results suggest a physical picture whereby the rich
dynamical consequences of sphere excluded volume can be
understood in terms of two effects with distinct dependences
on ϕs, aspect ratio, and rod density: tube compression due to
sphere-induced lateral confinement and blocking of reptation.
The latter generally dominates if dT,0 < 2R where rod−sphere
side-on collisions are less likely than end-on collisions. The
dynamics of unentangled rods is simpler, and diffusion
anisotropy is mainly controlled by the lateral confinement
effect.
We now investigate whether a deeply modified “renormal-

ized” form of reptation might be relevant in entangled systems.
In the pure-needle fluid the tube diameter and diffusion
constants are related via the scaling law,3,12 D⊥

(r)/D∥
(r) ∝

(dT,0/L)
2 ∝ (1/ρr*)

2 with D∥
(r) = D∥,0

(r) for ρr* ≫ 1 (in practice
>40), but there is no guarantee such a motional mechanism and
scaling relation exist in rod−sphere mixtures. However, we can
derive18 from eq 2 that the form of the above classic relation
holds if ρr* ≫ 1 and D⊥

(r)/D∥
(r) ≪ (1/γ)2, thereby obtaining
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where dT(ϕs) was given above and a ≡ 1.93. While eq 4 is not
predictive unless one of the diffusion constants is known, it
establishes the physical picture of an entangled rod diffusing via
an ef fective reptative motion where two (coupled) sphere-
induced renormalizations enter: the tube is compressed and
longitudinal motion is slowed. The inequalities that underlie

Figure 2. Rod transverse diffusion constant (normalized by its pure-
polymer-fluid value) as a function of sphere volume fraction for two
aspect ratios, γ = 1 (dash) and 8 (solid), and three reduced rod
number densities ρr* = 0 (black), 20 (red), 80 (blue); the latter two
correspond to 2R/dT,0 = 2.42, 10.8 for γ = 1, and 0.302, 1.35 for γ = 8,
respectively. (Inset) Same plot for the reduced longitudinal diffusion
constant.

Figure 3. Reduced rod CM diffusion constant vs sphere volume
fraction corresponding to Figure 2 for γ = 1 (dash) and 8 (solid) using
the same color codes and line types. To clearly illustrate the near
collapse in shape, the γ = 1 results are shown with the x-axis rescaled
by a factor of ∼0.331, 0.579, and 1.68 for ρr* = 0, 20, and 80,
respectively. (Inset) Ratio of the transverse and longitudinal diffusion
constants vs sphere volume fraction. The green dash-dot line indicates
a slope of 2.
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the applicability of eq 4 imply L2/D∥
(r) ≪ (2R)2/D⊥

(r), which
corresponds to a time-scale separation that assures renormal-
ized reptation is “fast enough” on the sphere length scale.
Whether these conditions are achieved in a specific mixture is
subtle given the localization transition occurs at sufficiently high
ϕs due to complete blocking of reptation.
Figure 4 presents calculations of the transverse diffusivity as a

function of rod concentration based on eqs 3 and 4. The pure-

needle reptation scaling law continuously fails as sphere
concentration grows. The rod transverse diffusivity agrees
well with eq 4 beginning in the lightly entangled regime for
relatively small aspect ratios. However, if γ and ϕs are large,
rods localize before topological entanglements emerge. On the
other hand, eq 4 is generically satisfied in the ρr* ≫ 1 regime if
the system is not close to the localization transition. This point
is demonstrated in Figure 4 by performing a “virtual”
calculation where the free reptation value is enforced by hand
for the longitudinal diffusion constant (D∥

(r)(ϕs) → D∥,0
(r)). The

transverse diffusion constant then is predicted18 to exactly
follow eq 4 at large ρr*, a general result for any choice of
“external” and nonlocalized (hence not self-consistent) model
for D∥

(r) in eq 3.
Finally, we have analyzed the dynamic localization transition

sphere volume fraction, ϕc, and find it can be understood in a
universal manner; see the SM18 for detailed discussions
including mathematical derivations. Briefly, for ρr* → 0
(where ϕc → ϕc,0) and γ ≫ 1, needle localization occurs at a
critical volume fraction of an “effective object” of sphero-
cylindrical geometry with volume ∼R2L; the latter can be
interpreted as the volume of a needle surrounded by spheres in
contact with it. The effect of nonzero rod concentration enters
only via a multiplicative factor, ϕc/ϕc,0, which is entirely
controlled by ρr*/(1 + γ). At high aspect ratio the latter scales
as 2R/dT,0 in the entangled regime, which characterizes the
ability of spheres to “cap” the tube. Hence, dynamic localization
in entangled rods is understood as an extreme consequence of
the blocked reptation effect.

In summary, we have developed a microscopic theory for rod
diffusion in a hard sphere matrix that captures both topological
entanglements and rod−sphere excluded volume constraints in
a unified framework. Many new and testable qualitative and
quantitative predictions have been made. While experimen-
tal6−10 and simulation11,16 studies are emerging for flexible
chain nanocomposites with effectively immobile spheres, to the
best of our knowledge there are no measurements or
simulations of the analogue for rigid needles that our present
work addresses.20 However, opportunities do exist for future
experimental tests by measuring the diffusion of entangled rod-
like biopolymers (e.g., actin, microtubules, fibrin)2,23 in
crowded intracellular environments where obstacles can be
effectively immobile23 and also diffusion in quenched porous
media24 or holographically fabricated arrays of static meso-
scopic particles.25 Very specific simulation tests are definitely
possible. More broadly, the present work provides a foundation
for treating the diffusion of flexible chains in polymer
nanocomposites,6−11,16 perhaps by building on our “renormal-
ized reptation” idea for entangled chains and primitive path and
mapping ideas15 for unentangled polymers. Finally, the
approach can extended to treat both the effects of nonrandom
composite structure and sphere mobility on tube localization
and polymer diffusion.
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